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Embedded in countless natural products and medicinally relevant Me

compounds, the indole heterocycle has served to inspire synthetic Me N\ " o Q
chemists for well over a centufyThe hapalindole and fischerindole T4 ‘Nes @ +Me ©
—> N
H

classes of natural products piqued our interest by virtue of their @— Me
structural beauty and bioactivilyOur retrosynthetic analysis of N H

hapalindole Q1, Figure 1% led to hypothetical indole- and carvone- hapa.ind';.e Q) 2+ 3-
derived synthong2+ and 3— (Figure 1). By analogy to Barton’s mechanistic blueprint® | T TS 7

classic synthesis of usnic acid, which utilized a phenolate radical carvone (3) Mo

coupling? we reasoned that bond formation betw@eand3 could > Base ©f\> + °©
conceivably be accomplished through a coupling of radi2e&nd indole (2) | ) Me
3e which should be accessible via oxidation of the corresponding

anions2- and 3~. While oxidative dimerization of enolates is
known? the analogous process with indoles (or metallo-enamines)
is not. In fact, the heterocoupling of enolates has seen little use in
synthesis since the process is plagued by low yields, the use of equi-
molar quantities of metal salts relative to those of all enolate species
present, and the requirement of a large excesd.(Bequiv) of one i
of the partners to avoid homocoupling. Described herein are short, £ig,re 1. Retrosynthetic analysis of{-1 leads to the invention of a direct
enantioselective, protecting group-free total synthese$pfl(and coupling of indoles with carbonyl compounds.

12-epifischerindole U isothiocyanate-{-1C° based on the analysis
outlined above. Further, these syntheses overcome the limitations
of enolate coupling and set a precedent that is extended to the indole (2) THF, Base, then [O]

+
. . . . ; carvene (3 [O] = FeCly/DMF (Fe) or
coupling of indoles with a diverse set of ketones, esters, and amides. @) Copper(ll)2-ethylhexanoate (Cu)

Table 1. Selected Optimization Results of 2 + 3 — 4

Empirical validation of our design (Figure 1) was obtained by Entry Conditions Yield (%)
employing “standard” conditions for ketone enolate couplihgs. ] 2 (1.069), 3 (3.0 6q), LDA (4.0 q), Fe (4.0 6q), 781023 °C __ ca 15
Thus, as shown in Table 1 (entry 1), addition of LDA (4.0 equiv) 2 2 (1.0 eq), 3 (3.0 eq), LDA (4.0 eq), Cu (4.0 eg), 78 to 23 °C 24
to a 3-fold excess 08 relative to2 followed by FeC} (4.0 equiv) 3 2(1.0eq), 3 (1.0 eq), LDA (2.0 eq), Cu (2.0 eq), =78 10 0 °C 24

4 2 (3.0eq), 3 (1.0 eq), LDA (4.0 eq), Cu (4.0 eq), -78 t0 0 °C 32

resulted in ca. 15% yield of addudt as a single diastereomer
(colorless cubes, mp 12430 °C, see Scheme 1 for X-ray
crystallographic analysis). After evaluating numerous oxidants we ~ ° Isolated yield after chromatograpHyYield based on recovered sm.
found that copper(ll)2-ethylhexanoatmnsistently provided higher ] ) )

yields and eliminated the need to use DMF as cosolvent (entry 2). "esulting enolate with acetaldehyde (L-Selectride, THF8°C, 1
Similar results were obtained by using equimolar amounts of both N; then CHCHO, —78—23°C, 2 h); (2) dehydration of the crude

2 and3 (entry 3). Another increase in yield occurred using a 3-fold  @lcohol5 (Martin sulfurane, CHG 23°C, 10 min) to give indole
excess oR (entry 4). The optimum protocol emerged upon addition 672in 75% overall yield, intersecting with the Albizati syntheéts;

of LHMDS (3.0 equiv) to a solution o2 (2.0 equiv) and3 (1.0 (3) microwave-enhancéd!? reductive amination (NaB#CN (10
equiv) in THF at—78 °C followed by addition of 1.5 equiv of  €duiv), NHOAc (40 equiv), MeOH, THF, 156C, 2 min) to furnish
copper(ll)2-ethylhexanoate to furnigtin 53% isolated yield (70% the amine7 as a 6:1 mixture of diastereomers; and (4) conversion
based on recovered starting material (sm), entry 5). The remainderto (+)-1 by isothiocyante formatioft (CS(imid), (1.1 equiv, CH-

of the material consists of recoverécand3 and a small amount ~ Clz, 23°C).13

of carvone dimer (indole dimer was not observed). The yield is  The total synthesis of<)-10° was completed from indolé by

not diminished even or 100 mmol scale. The use of substoichio-  the following short sequence: (1) biomimétitacid-catalyzed ring
metric quantities of oxidant (relative to moles of all anionic species) closure (TMSOTT, 25C, 1 h) of6 to afford ketone8 in 75% yield

in an enolate coupling is without precedérnd the mechanistic ~ based on recovered sm; (2) standard reductive aminatiétof

2 (2.0 eq), 3 (1.0 eq), LHMDS (3.0 eq), Cu (1.5 eq), —78 °C 53 (70)?

implications of this finding will be discussed elsewhére. furnish the amined as a 10:1 mixture of diastereomers in 60%
With a simple route to obtain multigram quantities 4from yield; and (3) conversion @ to (—)-10by isothiocyanate formation.
(R)-carvone, completion of the total synthesis of){1’ was Based on the optical rotation of syntheti€)¢10{[a]p —200 (CH-

accomplished by executing the following operations (Scheme 1): Cl,, ¢ 0.020), lit. jo]p +231 (CHCI,, ¢ 0.035}, the absolute
(1) deprotonation of the indole ™N\H of 4 (LHMDS, THF, —78 configuration of naturalH)-10is opposite that depicted in Scheme
°C),? conjugate reductidffi and stereoselective quenching of the 1 (9510R,11R,12R). The synthetic pathway toH)-hapalindole Q

7450 m J. AM. CHEM. SOC. 2004, 126, 7450—7451 10.1021/ja047874w CCC: $27.50 © 2004 American Chemical Society
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Scheme 1. Enantioselective Total Syntheses of (+)-1 and (—)-102

a. LHMDS,

L-Selectride -,

then CH3CHO N\
N
H
5

b. Martin
sulfurane

Me

c. TMSOTf

H
6 (75% overall, dr = >20:1)

d. NH,OAc, | (61%,
NaBH,CN y66% bsm)

(55%,
65% bsm)

d. NH,OAc,
NaBH,CN

9 (dr = 10:1)
(60%)l e. CS(imid),

7 (dr=6:1)
e. CS(imid), l(es%)

Me

(—)-12-egi-fischerindole U
isothiocyanate (10)
aReagents and conditions: (a) LHMDS (1.5 equiv), THF8 °C, 20
min thenL-Selectride (1.05 equiv), 1 h, then @EHO (6.0 equiv)~78—23
°C, 2 h; (b) Martin sulfurane (1.1 equiv), CHEILO min, 75% overall; (c)
TMSOTTf (3.0 equiv), MeOH (1.1 equiv), Gi€l,, 0°C, 1 h, 75% bsm; (d)
NaBHs;CN (10 equiv), NHOAc (40 equiv), MeOH, THF, 150C, 2 min,
61% (7); for 9: same reagents, 2&, 48 h, 55%; (e) CS(imid)1.1 equiv),
CH.Cly, 0—23°C, 3 h, 63% (), 60% (LO).

(+)-hapalindole Q (1)

(1) and ()-12-epifischerindole U isothiocyanatel@) proceeds
in 22% and 15% overall yield fromR)-carvone, respectively.

The scope of the direct indole coupling was briefly evaluated
by the study of the examples summarized in Table 2 using
conditions established for the synthesisbufFree alcohols are
tolerated {2, additional LHMDS added), hindered indoles such as
13 are accessible, and amides also participate in this readtibn (

18) as illustrated with Evans and Oppolzer auxiliaries. The latter
substrates 15—18) proceed with high diastereoselectivity. The
method also works with functionalized indole substratieé&—(18)
andtert-butyl esters 19).

In conclusion, we have developed a new and practical method
for the direct coupling of indoles with carbonyl compounds that
has been applied to the most concise and efficient synthesis)df (
yet reported and to the first total synthesis and absolute configu-
ration assignment of a fischerindole-)-10]. This protocol can

be used to construct quaternary carbon centers, is amenable to
asymmetric synthesis, and can be performed on a multigram scale.

Indoles that would be otherwise unobtainable in a single step from
readily available materials are now easily accessed, thus filling a
gap in indole synthesis methodology.
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(1.5 equiv) u
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